Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Chemosphere ; 358: 142139, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38688349

RESUMO

The widespread and increasing use of nanomaterials has resulted in a higher likelihood of exposure by inhalation for nanotechnology workers. However, tracking the internal dose of nanoparticles deposited at the airways level, is still challenging. To assess the suitability of particle number concentration determination as biomarker of internal dose, we carried out a cross sectional investigation involving 80 workers handling nanomaterials. External exposure was characterized by portable counters of particles DISCminiTM (Testo, DE), allowing to categorize 51 workers as exposed and 29 as non-exposed (NE) to nanoparticles. Each subject filled in a questionnaire reporting working practices and health status. Exhaled breath condensate was collected and analysed for the number of particles/ml as well as for inflammatory biomarkers. A clear-cut relationship between the number of airborne particles in the nano-size range determined by the particle counters and the particle concentration in exhaled breath condensate (EBC) was apparent. Moreover, inflammatory cytokines (IL-1ß, IL-10, and TNF-α) measured in EBC, were significantly higher in the exposed subjects as compared to not exposed. Finally, significant correlations were found between external exposure, the number concentration of particles measured by the nanoparticle tracking analysis (NTA) and inflammatory cytokines. As a whole, the present study, suggests that NTA can be regarded as a reliable tool to assess the inhaled dose of particles and that this dose can effectively elicit inflammatory effects.

2.
J Nanobiotechnology ; 22(1): 45, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291460

RESUMO

Amorphous silica nanoparticles (ASNP) are among the nanomaterials that are produced in large quantities. ASNP have been present for a long time in several fast-moving consumer products, several of which imply exposure of the gastrointestinal tract, such as toothpastes, food additives, drug excipients, and carriers. Consolidated use and experimental evidence have consistently pointed to the very low acute toxicity and limited absorption of ASNP. However, slow absorption implies prolonged exposure of the intestinal epithelium to ASNP, with documented effects on intestinal permeability and immune gut homeostasis. These effects could explain the hepatic toxicity observed after oral administration of ASNP in animals. More recently, the role of microbiota in these and other ASNP effects has attracted increasing interest in parallel with the recognition of the role of microbiota in a variety of conditions. Although evidence for nanomaterial effects on microbiota is particularly abundant for materials endowed with bactericidal activities, a growing body of recent experimental data indicates that ASNPs also modify microbiota. The implications of these effects are recounted in this contribution, along with a discussion of the more important open issues and recommendations for future research.


Assuntos
Microbioma Gastrointestinal , Nanopartículas , Animais , Humanos , Dióxido de Silício/toxicidade , Nanopartículas/toxicidade , Mucosa Intestinal
3.
Ecotoxicol Environ Saf ; 267: 115645, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37922781

RESUMO

The increased awareness about possible health effects arising from micro- and nanoplastics (MNPs) pollution is driving a huge amount of studies. Many international efforts are in place to better understand and characterize the hazard of MNPs present in the environment. The literature search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology in two different databases (PubMed and Embase). The selection of articles was carried out blind, screening titles and abstracts according to inclusion and exclusion criteria. In general, these studies rely on the methodology already in use for assessing hazard from nanomaterials and particles of concern. However, only a limited number of studies have so far directly measured human exposure to MNPs and examined the relationship between such exposure and its impact on human health. This review aims to provide an overview of the current state of research on biomarkers of oxidative stress, inflammation, and genotoxicity that have been explored in relation to MNPs exposure, using human, cellular, animal, and plant models. Both in-vitro and in-vivo models suggest an increased level of oxidative stress and inflammation as the main mechanism of action (MOA) leading to adverse effects such as chronic inflammation, immunotoxicity and genotoxicity. With the identification of such biological endpoints, representing critical key initiating events (KIEs) towards adaptive or adverse outcomes, it is possible to identify a panel of surrogate biomarkers to be applied and validated especially in occupational settings, where higher levels of exposure may occur.


Assuntos
Dano ao DNA , Microplásticos , Animais , Humanos , Biomarcadores , Inflamação/induzido quimicamente , Estresse Oxidativo
4.
Environ Int ; 179: 108157, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37625222

RESUMO

The current evidence on nanomaterial toxicity is mostly derived from experimental studies making it challenging to translate it into human health risks. We established an international cohort (N = 141 workers) within the EU-LIFE project "NanoExplore" to address possible health effects from occupational exposures to nanomaterials. We used a handheld direct-reading optical particle counter to measure airborne nanoparticle number concentrations (PNC) and lung-deposited surface areas (LDSAs). Airborne particles were characterized by TEM and SEM-EDAX. We assessed oxidative/nitrosative stress with a panel of biomarkers in exhaled breath condensate (EBC) (8-isoprostane, malondialdehyde, nitrotyrosine), inflammation (high-sensitivity C reactive protein (hs-CRP), IL-1ß, TNF-α, IL-10) and KL-6 (considered as biomarker of interstitial lung fibrosis) and urine (total antioxidant power (TAP), 8-isoprostane, and malondialdehyde). Exhaled breath sampled in gas-sampling bags were assessed for oxidative potential. These biomarkers were quantified pre-shift at the beginning of the workweek and post-shift the 4th day. Relationships between airborne nanoparticle concentration and biomarkers were assessed by multiple linear regression with log-transformed exposure and biomarker concentrations adjusted for potential confounders. We found a positive dose-response relationship for three inflammation biomarkers (IL-10, IL-1ß and TNF-α) in EBC with both PNC and LDSA. A negative dose-response relationship was observed between PNC and TAP. This study suggests that occupational exposures to nanoparticles can affect the oxidative balance and the innate immunity in occupationally exposed workers. However, owing to the intrinsic variability of biomarkers, the observed changes along with their health significance should be assessed in a long-term perspective study.


Assuntos
Nanoestruturas , Exposição Ocupacional , Humanos , Interleucina-10 , Fator de Necrose Tumoral alfa , Biomarcadores , Exposição Ocupacional/efeitos adversos , Antioxidantes , Inflamação
5.
Nanotoxicology ; 17(1): 1-19, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36927342

RESUMO

Nanotechnology applications are fast-growing in many industrial fields. Consequently, health effects of engineered nanomaterials (ENMs) should be investigated. Within the EU-Life project NanoExplore, we developed a harmonized protocol of an international multicenter prospective cohort study of workers in ENM-producing companies. This article describes the development of the protocol, sample size calculation, data collection and management procedures and discusses its relevance with respect to research needs. Within this protocol, workers' ENM exposure will be assessed over four consecutive working days during the initial recruitment campaign and the subsequent follow-up campaigns. Biomonitoring using noninvasive sampling of exhaled breath condensate (EBC), exhaled air, and urine will be collected before and after 4-day exposure monitoring. Both exposure and effect biomarkers, will be quantified along with pulmonary function tests and diagnosed diseases reported using a standardized epidemiological questionnaire available in four languages. Until now, this protocol was implemented at seven companies in Switzerland, Spain and Italy. The protocol is well standardized, though sufficiently flexible to include company-specific conditions and occupational hygiene measures. The recruitment, to date, of 140 participants and collection of all data and samples, enabled us launching the first international cohort of nanotechnology workers. All companies dealing with ENMs could join the NanoExplore Consortium, apply this harmonized protocol and enter in the cohort, concieved as an open cohort. Its protocol meets all requirements of a hypotheses-driven prospective study, which will assess and reassess effects of ENM exposure on workers' health by updating the follow-up of the cohort. New hypothesis could be also considered.


Assuntos
Nanoestruturas , Exposição Ocupacional , Humanos , Estudos Prospectivos , Exposição Ocupacional/análise , Nanotecnologia , Nanoestruturas/toxicidade , Monitoramento Biológico , Estudos Multicêntricos como Assunto
6.
Health Policy ; 128: 49-54, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36414469

RESUMO

BACKGROUND: Italy experienced the first outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Europe, and was among the most hardly hit European countries. Growing evidence suggests healthcare workers (HCWs) are at increased risk of SARS-CoV-2 infection. Infection in HCWs can lead to cross-transmission and increase community transmission. Italy was the first country in Europe to introduce mandatory vaccinations against SARS-CoV-2 for HCWs, on April 1, 2021. AIM: To describe the policy processes and preliminary results of the introduction of compulsory vaccination against SARS-CoV-2 for HCWs in Italy. RESULTS AND CONCLUSION: In Italy, the adoption of the policy was possible in the context of the public health and economic crisis resulting from the pandemic, with support from the scientific community and among favorable political conditions. Preliminary data suggest the policy has so far had a positive impact on increasing vaccine uptake and lowering infection rates among HCWs. Hopefully, the lack of serious vaccine-related adverse events and the growing evidence on vaccine effectiveness will progressively strengthen vaccine confidence among HCWs. In the context of a global pandemic, the Italian experience could provide insight for policymakers in other countries considering similar policies. Further, the ethical, legal, and policy challenges raised by the current public health emergency could be used to inform future pandemic preparedness plans.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Itália/epidemiologia , Vacinação , Pessoal de Saúde , Políticas
7.
Ann Work Expo Health ; 67(2): 252-265, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36416452

RESUMO

Laser Powder Bed Fusion (L-PBF) is a well-known Additive Manufacturing (AM) technology with a wide range of industrial applications. Potential occupational exposures to metal nanoparticles (NP) as by-products could occur in these processes, and no cogent occupational exposure limits are available. To contribute to this assessment, a monitoring campaign to measure the NP release pattern in two metal L-PBF facilities was carried out in two academic laboratories adopting L-PBF technology for research purposes. The monitored processes deal with two devices and three feedstock types, namely stainless steel (AISI 316L), aluminium-silicon alloy (A357) and pure copper, which are associated with different levels of industrial maturity. Prolonged environmental and personal real-time monitoring of NP concentration and size were performed, temperature and relative humidity were also measured during environmental monitoring. The measurements reveal a controlled NP release of the monitored processes, resulting in an average reduced exposure of the operators during the whole working shift, in compliance with proposed limit values (20 000 n cm-3 for density >6000 kg m-3 or 40 000 n cm-3 for density <6000 kg m-3). Nonetheless, the monitoring results show release events with an increase in NP concentration and a decrease in NP size corresponding with several actions usually performed during warm-up and cleaning, leading to exposures over 40-50 000 n cm-3 during a considerable time interval, especially during the manufacturing of pure copper powder. The results show that the actions of the operators, boundary conditions (relative humidity) and set-up of the L-PBF device have an impact on the amount of NP released and their size. Several release events (significant increase in NP concentration and decrease in NP size) are identified and associated with specific job tasks of the workers as well as building conditions. These results contribute to the definition of NP release benchmarks in AM processes and provide information to improve the operational conditions of L-PBF processes as well as safety guidelines for operators.


Assuntos
Nanopartículas Metálicas , Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Pós , Cobre , Metais
8.
NanoImpact ; 29: 100441, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427812

RESUMO

Contamination of the environment with nano-and microplastic particles (NMPs) and its putative adverse effects on organisms, ecosystems, and human health is gaining increasing scientific and public attention. Various studies show that NMPs occur abundantly within the environment, leading to a high likelihood of human exposure to NMPs. Here, different exposure scenarios can occur. The most notable exposure routes of NMPs into the human body are via the airways and gastrointestinal tract (GIT) through inhalation or ingestion, but also via the skin due to the use of personal care products (PCPs) containing NMPs. Once NMPs have entered the human body, it is possible that they are translocated from the exposed organ to other body compartments. In our review article, we combine the current knowledge on the (1) exposure routes of NMPs to humans with the basic understanding of the potential (2) translocation mechanisms into human tissues and, consequently, their (3) fate within the human body. Regarding the (1) exposure routes, we reviewed the current knowledge on the occurrence of NMPs in food, beverages, personal care products and the air (focusing on indoors and workplaces) and found that the studies suggest an abundant presence of MPs within the exposure scenarios. The overall abundance of MPs in exposure matrices relevant to humans highlights the importance of understanding whether NMPs have the potential for tissue translocation. Therefore, we describe the current knowledge on the potential (2) translocation pathways of NMPs from the skin, GIT and respiratory systems to other body compartments. Here, particular attention was paid to how likely NMPs can translocate from the primary exposed organs to secondary organs due to naturally occurring defence mechanisms against tissue translocation. Based on the current understanding, we conclude that a dermal translocation of NMPs is rather unlikely. In contrast, small MPs and NPs can generally translocate from the GIT and respiratory system to other tissues. Thus, we reviewed the existing literature on the (3) fate of NMPs within the human body. Based on the current knowledge of the contamination of human exposure routes and the potential translocation mechanisms, we critically discuss the size of the detected particles reported in the fate studies. In some cases, the particles detected in human tissue samples exceed the size of a particle to overcome biological barriers allowing particle translocation into tissues. Therefore, we emphasize the importance of critically reading and discussing the presented results of NMP in human tissue samples.


Assuntos
Microplásticos , Plásticos , Humanos , Microplásticos/metabolismo , Plásticos/metabolismo , Ecossistema , Trato Gastrointestinal/metabolismo , Sistema Respiratório/metabolismo
9.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077213

RESUMO

Inflammation is a comprehensive set of physiological processes that an organism undertakes in response to a wide variety of foreign stimuli, such as viruses, bacteria, and inorganic particles. A key role is played by cytokines, protein-based chemical mediators produced by a broad range of cells, including the immune cells recruited in the inflammation site. The aim of this systematic review is to compare baseline values of pro/anti-inflammatory biomarkers measured in Exhaled Breath Condensate (EBC) in healthy, non-smoking adults to provide a summary of the concentrations reported in the literature. We focused on: interleukin (IL)-1ß, IL-4, IL-6, IL-8, IL-10, tumour necrosis factor-alpha (TNF-α), and C reactive protein (CRP). Eligible articles were identified in PubMed, Embase, and Cochrane CENTRAL. Due to the wide differences in methodologies employed in the included articles concerning EBC sampling, storage, and analyses, research protocols were assessed specifically to test their adherence to the ATS/ERS Task Force guidelines on EBC. The development of reference intervals for these biomarkers can result in their introduction and use in both research and clinical settings, not only for monitoring purposes but also, in the perspective of future longitudinal studies, as predictive parameters for the onset and development of chronic diseases with inflammatory aetiology.


Assuntos
Testes Respiratórios , Citocinas , Adulto , Biomarcadores , Testes Respiratórios/métodos , Proteína C-Reativa/análise , Citocinas/metabolismo , Expiração , Humanos , Inflamação
10.
Environ Int ; 169: 107502, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36095930

RESUMO

The impact of exposure to respirable particulate matter (PM) during pregnancy is a growing concern, as several studies have associated increased risks of adverse pregnancy and birth outcomes, and impaired intrauterine growth with air pollution. The molecular mechanisms responsible for such effects are still under debate. Extracellular vesicles (EVs), which travel in body fluids and transfer microRNAs (miRNAs) between tissues (e.g., pulmonary environment and placenta), might play an important role in PM-induced risk. We sought to determine whether the levels of PM with aerodynamic diameters of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) are associated with changes in plasmatic EV release and EV-miRNA content by investigating 518 women enrolled in the INSIDE study during the first trimester of pregnancy. In all models, we included both the 90-day averages of PM (long-term effects) and the differences between the daily estimate of PM and the 90-day average (short-term effects). Short-term PM10 and PM2.5 were associated with increased concentrations of all seven EV types that we assayed (positive for human antigen leukocyte G (HLA-G), Syncytin-1 (Sync-1), CD14, CD105, CD62e, CD61, or CD25 determinants), while long-term PM10 showed a trend towards decreased EV concentrations. Increased Sync-1 + EV levels were associated with the plasmatic decrease of sVCAM-1, but not of sICAM-1, which are circulating biomarkers of endothelial dysfunction. Thirteen EV-miRNAs were downregulated in response to long-term PM10 and PM2.5 variations, while seven were upregulated (p-value < 0.05, false discovery rate p-value (qFDR) < 0.1). Only one EV-miRNA (hsa-miR-221-3p) was downregulated after short-term variations. The identified PM-modulated EV-miRNAs exhibited putative roles in inflammation, gestational hypertension, and pre-eclampsia, as highlighted by miRNA target analysis. Our findings strongly support the hypothesis that EVs have an important role in modulating PM exposure effects during pregnancy, possibly through their miRNA cargo.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Vesículas Extracelulares , MicroRNAs , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Biomarcadores/análise , Feminino , Produtos do Gene env , Antígenos HLA-G/análise , Antígenos HLA-G/farmacologia , Humanos , MicroRNAs/análise , Material Particulado/análise , Gravidez , Proteínas da Gravidez
11.
Front Toxicol ; 4: 974429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36171865

RESUMO

Engineered nanomaterials have been found to induce oxidative stress. Cellular oxidative stress, in turn, can result in the induction of antioxidant and detoxification enzymes which are controlled by the nuclear erythroid 2-related factor 2 (NRF2) transcription factor. Here, we present the results of a pre-validation study which was conducted within the frame of BIORIMA ("biomaterial risk management") an EU-funded research and innovation project. For this we used an NRF2 specific chemically activated luciferase expression reporter gene assay derived from the human U2OS osteosarcoma cell line to screen for the induction of the NRF2 mediated gene expression following exposure to biomedically relevant nanobiomaterials. Specifically, we investigated Fe3O4-PEG-PLGA nanomaterials while Ag and TiO2 "benchmark" nanomaterials from the Joint Research Center were used as reference materials. The viability of the cells was determined by using the Alamar blue assay. We performed an interlaboratory study involving seven different laboratories to assess the applicability of the NRF2 reporter gene assay for the screening of nanobiomaterials. The latter work was preceded by online tutorials to ensure that the procedures were harmonized across the different participating laboratories. Fe3O4-PEG-PLGA nanomaterials were found to induce very limited NRF2 mediated gene expression, whereas exposure to Ag nanomaterials induced NRF2 mediated gene expression. TiO2 nanomaterials did not induce NRF2 mediated gene expression. The variability in the results obtained by the participating laboratories was small with mean intra-laboratory standard deviation of 0.16 and mean inter laboratory standard deviation of 0.28 across all NRF2 reporter gene assay results. We conclude that the NRF2 reporter gene assay is a suitable assay for the screening of nanobiomaterial-induced oxidative stress responses.

12.
Nanomaterials (Basel) ; 12(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35808143

RESUMO

Amorphous silica nanoparticles (ASNP) are present in a variety of products and their biological effects are actively investigated. Although several studies have documented pro-inflammatory effects of ASNP, the possibility that they also modify the response of innate immunity cells to natural activators has not been thoroughly investigated. Here, we study the effects of pyrogenic ASNP on the LPS-dependent activation of human macrophages differentiated from peripheral blood monocytes. In macrophages, 24 h of pre-exposure to non-cytotoxic doses of ASNP markedly inhibited the LPS-dependent induction of pro-inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10). The inhibitory effect was associated with the suppression of NFκB activation and the increased intracellular sequestration of the TLR4 receptor. The late induction of glutamine synthetase (GS) by LPS was also prevented by pre-exposure to ASNP, while GS silencing did not interfere with cytokine secretion. It is concluded that (i) macrophages exposed to ASNP are less sensitive to LPS-dependent activation and (ii) GS induction by LPS is likely secondary to the stimulation of cytokine secretion. The observed interference with LPS effects may point to a dampening of the acute inflammatory response after exposure to ASNP in humans.

13.
Part Fibre Toxicol ; 19(1): 49, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854319

RESUMO

BACKGROUND: The widespread use of nano-biomaterials (NBMs) has increased the chance of human exposure. Although ingestion is one of the major routes of exposure to NBMs, it is not thoroughly studied to date. NBMs are expected to be dramatically modified following the transit into the oral-gastric-intestinal (OGI) tract. How these transformations affect their interaction with intestinal cells is still poorly understood. NBMs of different chemical nature-lipid-surfactant nanoparticles (LSNPs), carbon nanoparticles (CNPs), surface modified Fe3O4 nanoparticles (FNPs) and hydroxyapatite nanoparticles (HNPs)-were treated in a simulated human digestive system (SHDS) and then characterised. The biological effects of SHDS-treated and untreated NBMs were evaluated on primary (HCoEpiC) and immortalised (Caco-2, HCT116) epithelial intestinal cells and on an intestinal barrier model. RESULTS: The application of the in vitro SDHS modified the biocompatibility of NBMs on gastrointestinal cells. The differences between SHDS-treated and untreated NBMs could be attributed to the irreversible modification of the NBMs in the SHDS. Aggregation was detected for all NBMs regardless of their chemical nature, while pH- or enzyme-mediated partial degradation was detected for hydroxyapatite or polymer-coated iron oxide nanoparticles and lipid nanoparticles, respectively. The formation of a bio-corona, which contains proteases, was also demonstrated on all the analysed NBMs. In viability assays, undifferentiated primary cells were more sensitive than immortalised cells to digested NBMs, but neither pristine nor treated NBMs affected the intestinal barrier viability and permeability. SHDS-treated NBMs up-regulated the tight junction genes (claudin 3 and 5, occludin, zonula occludens 1) in intestinal barrier, with different patterns between each NBM, and increase the expression of both pro- and anti-inflammatory cytokines (IL-1ß, TNF-α, IL-22, IL-10). Notably, none of these NBMs showed any significant genotoxic effect. CONCLUSIONS: Overall, the results add a piece of evidence on the importance of applying validated in vitro SHDS models for the assessment of NBM intestinal toxicity/biocompatibility. We propose the association of chemical and microscopic characterization, SHDS and in vitro tests on both immortalised and primary cells as a robust screening pipeline useful to monitor the changes in the physico-chemical properties of ingested NBMs and their effects on intestinal cells.


Assuntos
Materiais Biocompatíveis , Mucosa Intestinal , Materiais Biocompatíveis/farmacologia , Células CACO-2 , Digestão , Humanos , Hidroxiapatitas/farmacologia , Lipossomos , Nanopartículas , Permeabilidade , Junções Íntimas
14.
Toxics ; 10(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35622671

RESUMO

Many pathological conditions and certain airway exposures are associated with oxidative stress (OS). Malondialdehyde (MDA) is an end-product of the oxidation of lipids in our cells and is present in all biological matrices including exhaled breath condensate (EBC). To use MDA as a biomarker of OS in EBC, a reference interval should be defined. Thus, we sought to summarize reference values reported in healthy adult populations by performing a systematic review and meta-analysis using a standardized protocol registered in PROSPERO (CRD42020146623). Articles were retrieved from four major databases and 25 studies with 28 subgroups were included. Defining the distribution of MDA measured in reference populations with a detection combined with a separation technique still represents a challenge due to the low number of studies available, different analytical methods used, and questionable methodological qualities of many studies. The most salient methodological drawbacks have been in data collection and reporting of methods and study results by the researchers. The lack of compliance with the recommendations of the European Respiratory Society and American Thoracic Society was the major limitation in the current research involving EBC. Consequently, we were unable to establish a reference interval for MDA in EBC.

15.
Toxics ; 10(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35448421

RESUMO

Oxidative stress has been associated with various inflammation-related human diseases. It is defined as an imbalance between the production and elimination of reactive oxygen species (ROS). ROS can oxidize proteins, lipids, and DNA, and some of these oxidized products are excreted in urine, such as malondialdehyde (MDA), which is considered a biomarker for oxidative damage of lipids. To interpret changes of this biomarker as a measure of oxidative species overproduction in humans, a background range for urinary MDA concentration in the general population is needed. We sought to establish urinary MDA concentration ranges for healthy adult populations based on reported values in the available scientific literature. We conducted a systematic review and meta-analysis using the standardized protocol registered in PROSPERO (CRD42020146623). EMBASE, PubMed, Web of Science, and Cochrane library databases were searched from journal inception up to October 2020. We included 35 studies (divided into 47 subgroups for the quantitative analysis). Only studies that measured creatinine-corrected urinary MDA with high-performance liquid chromatography (HPLC) with mass spectrometry (MS), fluorescence detection, or UV photometry were included. The geometric mean (GM) of urinary MDA concentration was 0.10 mg/g creatinine and 95% percentile confidence interval (CI) 0.07-0.12. Age, geographical location but not sex, and smoking status had a significant effect on urinary MDA concentrations. There was a significant increasing trend of urinary MDA concentrations with age. These urinary MDA values should be considered preliminary, as they are based on mostly moderate to some low-quality evidence studies. Although urinary MDA can reliably reflect excessive oxidative stress in a population, the influence of physiological parameters that affect its meaning needs to be addressed as well as harmonizing the chemical analytical methods.

16.
Toxics ; 10(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448433

RESUMO

Among particulate matter composing paints, titanium dioxide (TiO2) forms about 20% of the final suspension. Although TiO2 is broadly used in many applications, TiO2 powders represent an established respiratory hazard for workers with long-term exposure. In 35 workers of a paints production plant (15 exposed and 20 not exposed), we assessed pro-inflammatory cytokines (IL-1ß, TNF-α, IL-10, IL-17), surfactant protein D (SP-D) and Krebs von den Lungen-6 glycoprotein (KL-6) in exhaled breath condensate (EBC). In urine samples, we measured 8-isoprostane (Isop) and Malondialdehyde (MDA) as biomarkers of oxidative stress, and Titanium (Ti-U) as a biomarker of exposure. Health status, habits and occupational history were recorded. Airborne respirable dusts and Ti were quantified. Particle number concentration and average diameter (nm) were detected by a NanoTracer™ monitoring device. Ti was measurable in filters collected at the respiratory breathing zone (0.11−0.44 µg/m3 8-h TWA). IL-1ß and IL-10 values were significantly higher in exposed workers, whereas SP-D was significantly lower (p < 0.001). KL-6 was significantly higher in workers than in controls (p < 0.01). MDA levels were significantly increased in exposed workers and were positively correlated with Ti-U. Exposure to TiO2 in paint production is associated with the subtle alterations of lung pathobiology. These findings suggest the need for an integrated approach relying on both personal exposure and biomarker assessment to improve the hazard characterisation in occupational settings.

17.
Environ Res ; 212(Pt A): 113216, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35364045

RESUMO

BACKGROUND: Maternal exposure to air pollutants has been associated with pregnancy complications and adverse birth outcomes. Endothelial dysfunction, an imbalance in vascular function, during pregnancy is considered a key element in the development of pre-eclampsia. Environmental exposure to particulate matter (PM) during the first trimester of pregnancy might increase maternal inflammatory status thus affecting fetal growth, possibly leading to preterm delivery. OBJECTIVES: The purpose of the study was to evaluate possible effects of PM10 and PM2.5 exposure on fetal growth in healthy pregnant women at the end of the first trimester of pregnancy by investigating the relationship between circulating biomarkers of inflammation (IL-6), early systemic prothrombotic effects (CRP, plasma fibrinogen, PAI-1) and endothelial dysfunction (sICAM-1 and sVCAM-1). METHODS: 295 pregnant women were recruited. Individual PM exposure was assigned to each subject by calculating the mean of PM10 and PM2.5 daily values observed during the 30, 60, and 90 days preceding enrolment (long-term) and single lag days back to fourteen days (short-term), and circulating plasma biomarkers were determined. RESULTS: For long-term exposure, we observed an increase in sVCAM-1 and a decrease of PAI-1 levels for each 10 µg/m3 increase in PM10 concentration. Decreases in IL-6 and CRP levels were associated with each 10 µg/m3 PM2.5 increase. For short-term exposure, the levels of sVCAM-1 and PAI-1 were found to be associated with PM10 exposure, whereas fibrinogen levels were associated with PM2.5 exposure. Maternal plasmatic fibrinogen levels were negatively associated with the crown-rump length (p-value = 0.008). DISCUSSION: The present study showed that both long- and short-term exposures to PM are associated with changes in circulating levels of biomarkers in pregnant women reflecting systemic inflammation and endothelial dysfunction/activation. Our findings support the hypothesis that inflammation and endothelial dysfunction might have a central role in modulating the detrimental effects of air pollution exposure during pregnancy.


Assuntos
Poluição do Ar , Exposição Materna , Complicações na Gravidez , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Biomarcadores , Exposição Ambiental/análise , Feminino , Fibrinogênio , Humanos , Inflamação/induzido quimicamente , Interleucina-6/sangue , Exposição Materna/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise , Inibidor 1 de Ativador de Plasminogênio/sangue , Gravidez , Complicações na Gravidez/induzido quimicamente , Primeiro Trimestre da Gravidez
18.
Angew Chem Int Ed Engl ; 61(8): e202114482, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905284

RESUMO

The ability to selectively react one functional group in the presence of another underpins efficient reaction sequences. Despite many designer catalytic systems being reported for hydroboration reactions, which allow introduction of a functional handle for cross-coupling or act as mild method for reducing polar functionality, these platforms rarely deal with more complex systems where multiple potentially reactive sites exist. Here we demonstrate, for the first time, the ability to use light to distinguish between ketones and carboxylic acids in more complex molecules. By taking advantage of different activation modes, a single catalytic system can be used for hydroboration, with the chemoselectivity dictated only by the presence or absence of visible light.

19.
Org Lett ; 23(14): 5378-5382, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34196560

RESUMO

We report a dual-catalytic platform for the cross-dehydrogenative-coupling between (benzo-)thiazoles and amines which combines low loadings of an iridium photoredox catalyst and a cobaloxime catalyst under blue light irradiation. This transformation occurs without stoichiometric oxidants, giving products in moderate to excellent yields. DFT calculations support the key role of Co(II) for rearomatization of the radical-addition intermediate to generate the product.

20.
Angew Chem Int Ed Engl ; 60(38): 20594-20605, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34043248

RESUMO

Light has a remarkable and often unique ability to promote chemical reactions. In combination with transition metal catalysis, it offers exciting opportunities to modify catalyst function in a non-invasive manner, most frequently being reported to switch on or accelerate reactions that do not occur in the dark. However, the ability to completely change reactivity or selectivity between two different reaction outcomes is considerably less common. In this Minireview we bring together examples of this concept and highlight their mechanistically distinct approaches. Our overview demonstrates how these non-natural, photo-switchable systems provide key fundamental mechanistic insights, enhancing our understanding and stimulating development of new catalytic activity, and how this might lead to tangible applications, impacting fields such as polymer chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA